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Abstract. Two-fold photoelectron counting statistics are studied for quasimonochromatic 
light of arbitrary spectral profile. A numerical scheme is developed for the evaluation of the 
double generating function from which the joint probabilities, the photoelectron correlation 
function, and the clipped photoelectron correlation function can be evaluated. The time 
need not be short compared to the coherence time as in previous studies. Numerical results 
are presented for the photoelectron correlation function and for the clipped correlation 
function for the spectrum which would be observed in a Brillouin scattering experiment. 

1. Introduction 

There has been considerable interest recently in determining optical spectra by examining 
the statistics governing the emission of photoelectrons as evinced by the review articles 
of Glauber (1969), Arecchi (1969), Pike (1970), and Mehta (1970). The simplest description 
of these statistics is the single-fold (or first-order) probability that n photoelectrons will 
be counted during a specified counting time. Unfortunately, these first-order prob- 
abilities are relatively insensitive to the detailed shape of the spectrum (Barakat and 
Glauber 1973) which limits their usefulness as an experimental tool. A more useful 
characterization of the arrival statistics is contained in the two-fold (second-order) 
probability P(n, t ,  ; m, t,) which is the probability that n photoelectrons will be counted 
during t ,  and subsequently m counted during t,. A disadvantage of the direct use of 
P(n, t ,  ; m, t,)is the cumbersome nature ofthis description. A more compact second-order 
description is the photoelectron correlation function, of which a variant is generally 
measured in photoelectron counting experiments. 

The purpose of this paper is to present a procedure for evaluating the double generat- 
ing function, and from this, the joint probabilities and correlation function for photo- 
electron emissions. The method is not limited to short counting times; indeed one 
important result of these calculations is to display the effects of using counting times of 
various lengths in performing a PCS experiment. As an example we apply our general 
solution to a spectrum consisting of the superposition of three Lorentz lines, as would 
be observed in an experiment to observe Brillouin scattering. We emphasize, however, 
that the techniques themselves are directly applicable to gaussian light with any spectrum 
for which the field correlation function can be evaluated. We have examined other 
spectra of physical interest and these results will be published separately. 

Alternative address: Bolt Beranek and Newman Inc, Cambridge, Mass 02138, USA. 
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We should like to point out that Jakeman has already examined the two-fold counting 
statistics in the specific case ofa single Lorentz line, in that he has evaluated the generating 
function in closed form (Jakeman 1970). His method depends critically on the fact that 
the spectrum is Lorentz. Reference is-also made to a recent paper of Srinivasan and 
Sukavanam (1972) which attempts a generalization to arbitrary spectra of Jakeman’s 
approach. Finally, we note that it is the clipped correlation function and not the correla- 
tion function of photoelectrons itself which is commonly measured in such photoelectron 
counting experiments. 

Thus, in 0 4 we evaluate the clipped correlation function. Our result is not expressible 
as a simple analytic expression ; nevertheless the approach yields an approximation good 
to any degree of approximation desired. We illustrate this technique by examining the 
clipped correlation function for the Brillouin spectrum in an approximation one order 
better than currently available results. 

2. Formulation of the problem and formal solutions 

The joint counting statistics describing the emitted photoelectrons from a detector 
exposed to an optical field can be characterized by the probability of counting n photo- 
electrons during a time interval TI centred at time t ,  and subsequently counting m 
electrons during time interval T2 centred at t ,  which we write as P(n,, m,). However an 
important quantity, the correlation function, is more useful from an experimentalist’s 
point of view. The correlation function is defined as 

An analysis of the photoemission process (Glauber 1968) reveals that the probability 
of counting n photoelectrons in a time interval T i s  given by 

where 

is the negative frequency part of the complex field expanded over the orthonormal mode 
functions U,(r), and 

where A is the area of the detector and s is the sensitivity of the detector (which is assumed 
to be independent of frequency). Denoting the average with respect to the weight function 
P by (. . .), we can rewrite equation (2.2) in the more compact form 
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We can extend these results to joint probabilities. By an analysis similar to the one 
used to derive equation (2.2) (Jakeman 1970, Bedard 1967), it can be shown that 

where 
t i  + +T 

Ri = s d3r’ dt’E(-)(r’, t ‘ )E(+)(r’ ,  t’) .  
[A 

We will find it convenient to define a two-fold generating function Q(A, ,  A,) by 
w m  

Q ( & ,  A,) = 1 1 (1 -A,)n(l  -I,)”P(n,, m2).  
n = O  m = O  

Provided that Q is known, then P(n,  , m,) can be evaluated by differentiation : 

with the factorial moments of order ( j l )  given by 

. a j  a1 Q(4,QI 
(n(n-  1) .  . . (n- j+ l)m(m- 1) .  . . (m-l+ 1)) = (-I)’+’- - 

a i {  aA;  l 1 = l * = O  

Furthermore, the correlation function is simply 

Q(A,  , A 2 )  can be formally evaluated as a function of the field parameters; by applying 
equations (2.5) and (2.7) we have 

Q( i i  > 1 2 )  = ( e x ~ ( - i i Q i  - A 2 0 2 ) ) .  (2.12) 

Assuming the field to be chaotic, then the P function is given by the gaussian 

where ( nk)  is the average occupation number of the kth mode. 
Thus for a detector small in size compared to a coherence area, we can write 

(2.13) 

(2.14) 

and Y k  

unitary transformation 
ak/(nk)”2. Since M is an (infinite) hermitian matrix it can be diagonalized by a 

U’MU = A, uy = p. (2.16) 
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Upon performing the necessary change of variables, we have 

CO 1 =U’-- - {det(l+ M)}-’ 
k = O  ( I f m , )  

(2.17) 

where mk = mk(i1,  i2) are the eigenvalues of M. 
Consequently the problem now becomes the evaluation of these eigenvalues. There 

are two possible approaches. The first is to truncate M to finite size and evaluate the 
eigenvalues via a diagonalization routine. The second is to transform the infinite matrix 
eigenvalue problem into an equivalent eigenvalue problem involving an homogeneous 
Fredholm integral equation of the second kind having a symmetric kernel. Actually the 
methods complement each other in that the matrix involves the lineshape directly 
whereas the integral equation involves the Fourier transform of the lineshape, the 
correlation function, as its kernel. Although we originally carried out some of the 
calculations by the matrix method the vast majority were performed in the context of the 
integral equation method and it is this procedure that we outline below. 

The matrix eigenvalue problem can be shown to be equivalent to the following 
integral equation (since Jakeman has already performed the analysis we refer to his 
paper for details of the derivation) : 

m. 
g(t ’ - t )4 j ( t ’ )  dt’ = A4j(t), (2.18) 

W 

t i + + T  

A I  j g(t’-t)q5j(t’) dt’+A, 
t i  - + T  

where (in our notation) g(t’- t )  is the normalized correlation function of the field and 
where w ZE As(E‘-’E‘+’)  is the average counting rate of the detector. We seek only the 
eigenvalues m j ,  the eigenfunctions are superfluous. This integral equation is not of the 
standard symmetric Fredholm type because of the presence of two domains of definition : 
t ,  -4T < r < t ,  ++T and t 2 - i T  < t < t 2+tT .  It is only when t ,  = t2 that the two 
domains coalesce and we retrieve the standard type again. We now outline a numerical 
technique for solving the ‘gap’ integral equation which we have developed. It is probably 
easier to understand the rationale behind the method by first considering the short-time 
counting approximation. 

Before doing so, it is convenient at this point to rewrite equation (2.18) in terms of 
dimensionless variables. The spectrum of the light will have some characteristic width y 
which will be defined more precisely for particular spectra in the next section. We take 
as our dimensionless unit of time z = yr. In order to avoid a proliferation of symbols, we 
will still use Tfor the counting time but assume it measured in units of y. The correspond- 
ing dimensionless variable for the average count rate is U = w/y. 

Assume that Tis small compared with the time over which g(t) decays to its e folding 
value. Then we can approximate equation (2.18) by its mean value 

(2.19) 
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This equation must be satisfied for t = 0, z simultaneously. These two conditions are 
expressed in the form 

where we have utilized the fact that g ( z )  = g( - 7). Then since g(0) = 1, 

(2.20) 

(2.21) 

Upon evaluating the determinant and noting that the left-hand side is the reciprocal of 
the double generating function, we have 

Q(Al, A 2 )  = { l  + ( A l + A ~ ) ~ T + ~ l ~ ~ ( ~ T ) 2 ( 1 + g 2 ( ~ ) ) } - 1 .  (2.22) 

This is the same expression that Bedard (1967) obtained for very short counting times. 
To this degree of approximation, the correlation function is given by 

= (uT)'(l + g 2 ( z ) ) .  
a 2  

(n1mz) = - Q(4U I an, an, 1=12=0 
(2.23) 

We now generalize this approach by using N point Gauss quadrature to improve 
the approximation to the integrals in equation (2.18). This generalization, valid for 
arbitrarily long counting times, can be expressed in a form identical to equation (2.18) 
except that each element of the 2 x 2 matrix will itself be an N x N matrix. Using N point 
Gauss quadrature, we can approximate an integral by 

(2.24) 

where H ,  are the Gauss weight factors and x ,  are the Gauss quadrature points. As is 
well known, N point Gauss quadrature is exact for any polynomial f ( x )  of degree 
(2N- 1) or less (Kopal 1961). 

Applying Gauss quadrature to the integral equation, equation (2.18) yields 
N N 9 

A l  Hig(t-$Txi)+(~Txi)+I12 1 H i g ( t - i T x i - s ) ~ ( ~ T x i + r )  = b 4 ( t )  
i =  1 i = l  UT 

(2.25) 

where we have transformed the variabie limits of integration to the standard interval 
( -  1, + 1). We require that this single equation be satisfied at the 2N values oft  given by 

t j  = ~ T x , ,  . . . , TTxN, 1 ) T x ~  + Z, . . . , ~ T X N  + Z. (2.26) 

This yields 2N equations for the 2N unknowns $(tj), which, since the equations are 
homogeneous, requires the determination of the eigenvalues mk . This system of equations 
can be cast into matrix form by defining the N x N matrix B N ( z ) :  
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we see that 

(g(t’ - t” + z))’ dt‘ dt” (2.36) 

In accordance with standard practice, we normalize the photoelectron correlation 
function by dividing by (UT)’ = (n) ’  : 

(2.37) 

We see then that 
1 +T iT 

C(Z) = - 1 (g(t‘ - t” + 2))’ dt‘ dt” + 1. (2.38) 
T 2  -+T 

Note that in the short-counting-time approximation ( N  = 1) 

lim C(Z) = Ig(7)l’ + 1. (2.39) 
T-0 

The correlation function expressed in equation (2.38) is equivalent to the result given 
in equation (6.13) of Mehta’s review article. Our derivation is entirely quantum 
mechanical a la Glauber ; whereas the result in Mehta is based upon semiclassical theory. 

3. Photoelectron correlation function for Brillouin spectrum 

Before we discuss the clipped photoelectron correlation function it is of some interest 
to present numerical results for an actual spectrum. While current experimental uses 
of photoelectron counting statistics measurements have generaily been limited to 
measuring the bandwidths of single (usually Lorentz) spectral lines, physical phenomena 
giving rise to several spectral lines are also of interest. In the electrophoresis experiments 
of Ware and Flygare (1971), for example, a Lorentz line of different frequency is pro- 
duced for each component of distinct electrophoretic mobility. Another example is 
Brillouin scattering from media where the velocity of sound is very small such as in 
the work of Katyl and Ingard (1968) on surface waves along a liquid interface. 

We consider a spectrum consisting of the superposition of two Lorentz lines sym- 
metrically placed about a central Lorentz line of different height and halfwidth. This 
spectrum may be written in the form : 

The total energy in the beam is normalized to unity: 
m + 1  

I (w)do  = Rj = 1 .  
J - C C  j =  - ] 

Since R ,  = R -  1 ,  we define a parameter a = 2R, which represents the fraction of 
the total energy contained in the Brillouin lines. Thus a = 0 describes a single (Rayleigh) 
line and a = 1 describes a pair of (Brillouin) lines in the absence of a Rayleigh line. The 
actual Brillouin lines are spaced symmetrically about the Rayleigh line so that 
w ,  -coo = w 0 - w - , .  We also define a dimensionless quantity A = (wl-wo)/yo. 
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0 4  

Similarly, we define 6 yl/yo = y- Jy0  which gives the ratio of the width of the Brillouin 
line to the Rayleigh line. We will measure time in units of l / y o ,  setting t = yet, and 
measure beam strength in units of y o  by setting U = w/yo. A summary of these parameters 
is given in table 1. 

- - 
- - 

I I I I I I I I I I I 

Table 1. Summary of the dimensionless parameters 

Symbol Definition Meaning 

a 2R- ,  = 2R1 = I - R o  fraction ofenergy in 

A (U1 - 0 0 ) h o  ratio of frequency shift to 

6 ?,/Yo = Y - J Y O  ratio of Brillouin to Rayleigh 

Brillouin lines 

Rayleigh halfwidth 

halfwidths 

correlation time y ;  

units of correlation time 

U W / y O  number of photocounts in one 

T t70 counting time measured in 

The correlation function of the Brillouin spectrum is 

g(r)  = exp(-iwot){(1-a)e-'+ae-6'cosAr}. (3.3) 
We can drop the factor exp(-iw,t) in accordance with the analysis of Barakat and 
Glauber (1973) who have shown that the central frequency wo does not enter into the 
analysis when the spectrum is quasimonochromatic. 

A superposition of spectral lines, such as the Brillouin spectrum, will display hetro- 
dyning thus causing c(r) to oscillate on a time scale of l/A. c(r) is plotted as a function 
of r for counting times of 0.1 and 0.2 in figures 1 and 2 respectively. We selected these 

I n t e r v a l  t i m e  7 

Figure 1. Photoelectron correlation function C(T) for a Brillouin spectrum (A = 10, 6 = 1) 
with T =  0.1,~ = I : - . . - @  = O , - - - - a  = @.4, - (~  = 0.6 - . - v  = 1.0. 
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2.0, I l l 1  I I I I I I I  

o.8 t 1 
Interval time T 

Figure 2. Photoelectron correlation function C(T) for a Brillouin spectrum (A = 10, S = 1) 
with T = 0.2, 0 = 1: - . . - a  = 0, - - - - a  = 0.4, - a  = 0.6, - - . -a  = 1.0. 

counting times because 0.1 is long enough to show departure from the short-counting- 
time approximation, and 0.2 is just long enough to cause averaging over major details 
of the spectrum. For counting times much longer than l/A, C ( T )  tends to a gaussian-like 
shape and the oscillations vanish altogether. 

When the spectral line is lorentzian so that the correlation function is 

g(z )  = (3.7) 
the integral can be evaluated directly yielding 

This equation can be used to confirm that the accuracy of equation (2.33) is better 
than 0.1 for the case of the Lorentz spectrum. The integral can, of course, be explicitly 
evaluated for the Brillouin spectrum, but equation (2.33) is easier to apply in practice. 

4. Clipped correlation function 

Jakeman and Pike (1969) have pointed out that one can apply the method of ‘clipping’ 
a fluctuating signal in performing a photoelectron correlation experiment, and that 
this would permit a considerable simplification in the electronic equipment. Defining 
the clipped correlation function by 

ck( .r )  < n k ( o ) m ( z ) )  

where 
0 if n ( ~ )  < k 

if n(~) 2 k i 1 
nk(4  = 

we see that measuring c k ( T )  requires multiplication by only ones and zeros. 

(4.1) 

(4.2) 
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The clipped correlation function has been examined in the short-counting approxi- 
mation ( N  = 1 in the notation of 8 2) by Jakeman et al(1970), Degiorgio and Lastovka 
(1971), Kelly (1971); in the case of a Lorentz spectrum for arbitrary counting time by 
Jakeman (1970); and in several specialized cases by Koppel(l971). In order to demon- 
strate the use of equation (2.30) for the generating function we shall evaluate the clipped 
correlation function in an approximation one order better than N = 1 in the case of a 
Brillouin spectrum. This means that we take N = 2 in the generating function. 

To obtain Ck(7) from the double generating function, we employ equations (2.9) 
and (2.10) : 

For N = 1, we recall that the generating function is given by equation (2.23). In this 
case, the differentiation and subsequent summation can be carried out directly by using 
the substitutions 

U = l+cTi2  

v = cT+(uT)2(1-g2(Z))i2. 

With Q now expressible as ( U  + i1 V ) -  ', we have 

and the sum over n can be evaluated easily: 

Upon performing the remaining differentiation, we have 

C,(Z) = ( q k u T ( l + -  k 
1 + U T  1 + U T  

(4.4) 

(4.6) 

(4.7) 

In order to obtain an expression for ck(Z) valid for longer counting times, we use 
the generating function given in equation (2.30) with N = 2. In this case we can show 
that 

Q(J-1 9 
' 

1 + SI+ s2 + SlS,( 1 + YZ - x2  - W') (SI + s2) Y +  SlS,(2 Y- xu - x W )  
(s 1 + s2) Y +  s 1s2(2 Y - x U - x W )  1 + s ' + s2 + s 1 + Y 2  - x2  - I 7 7  

(4.8) 

= det 

where s j  (3uT)Lj and 

(4.9) 

with A E gx, -xl)T. We can evaluate the determinant explicitly with the result that 

(4.10) Q = ( L  + M s ,  + O(si))- ' 
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where 

L = 1+2s1+(1-Y2)s; (4.1 1)  

M = 2+s1(4-2X2- U 2 -  W2)+s:(2-2Y2-2X2-U2- W2+2XYU+2XyW).  

(4.12) 

Thus 

We must now evaluate the sum over n : 

(4.13) 

(4.14) 

Unfortunately we have not found any way to carry out this summation in closed form. 
For small k we can use a trick due to Jakeman (1970, appendix 3). Since 

we can rewrite the clipped correlation function as 

1).;=0 I & = O  

(4.16) 

Equation (4.16) is easy to apply for small k ;  in fact 

M" 4MrL'+2ML" 6ML" 
c3(Z) = c2(Z)+i(c)3( 2 2  -L2+ L3 

6L"M'- 6M"L' 18M'Lf2+ 18MLL" 24Lr3M 
- L4 +T-) (4.17) 

where the prime denotes differentiation with respect to s and all expressions are to be 
evaluated at s = $IT.  C,(.r) satisfies the recurrence relation 

Evaluating C,(t) in this manner introduces an error dependent upon the counting 
time T because we have taken N = 2 in the evaluation of the generating function. We 
estimated the severity of this error by comparing calculations of c(z) for N = 2 with 
those made using large values of N for several different spectra. In the worst situation 
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(Brillouin spectrum with A = 10) we found that N = 2 gave an accuracy of better than 
3 % for T = 0.2 and 0.5 % for T = 0.1. We would not expect the error introduced into 
C,(T) to be very much different. The situation is much better, incidentally, for single 
spectral lines. 

The clipped correlation function c ~ ( T )  for a Brillouin spectrum is shown in figures 3 
and 4. As is customary (Jakeman and Pike 1969) we have normalized by dividing by 
the product of the true and clipped mean counting rates : 

(4.19) 

0.3 0.6 0.9 I .2 0.4b ' I  ' I I I I I I I ' 
Interval time T 

Figure 3. Clipped photoelectron correlation function cl(r) for a Brillouin spectrum (A = 10, 
S = 1) with T = 0.1, U = 2.0 (UT = 0.2): 
a = 1.0. 

a = 0, --- a = 0.4, - a = 0.6, 

Figure 4. Clipped photoelectron correlation function c,(7) for a Brillouin spectrum (A = 10, 
6 = 1) with T =  0.2, U = 1.0 (UT= 0.2): -..- a = 0, --- a = 0.4, - a = 0.6, 
a = 1.0. 
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We note that as T becames larger there is a decrease in the slope of cl(z) at the origin, 
and an averaging over details in the spectrum. T = 0.2 is large enough to separate the 
curves of different CI values from each other at z = 0. 

In order to give some idea of the effects of clipping at different levels we plotted in 
figure 5 ck(z)  for a Lorentz spectrum at T = 0.1. 

0 03 C 6  09 12 
Interval time T 

Figure 5. ~ ~ ( 5 )  for a Lorentz spectrum with T = 0.1. L' = 0.1. --- k = 1, - k = 2, - - 
k = 3  

The method employed in this section can be directly applied to any other quasi- 
monochromatic spectrum, of course. By using larger values of N one can obtain any 
accuracy desired (or alternatively, treat longer counting times), though for k > 2 the 
algebra becomes considerably more cumbersome. 
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Appendix 

Let us outline the derivation ofthe correlation function (equation (2.11)). From equations 
(2.17) and (2.30), we have 

where 

A E I +)oT(Al +A~)B(O)+()UT)~A~A~(B(O)B(O)-B(~)B(-T)). ('4.2) 
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The matrix differentiation can be explicitly performed. By virtue of the chain rule (let 
det A A for convenience): 

and since 

Alj.,=i.l=O = I 

we have the right-hand side of equation (A.3) given by 

a2 
A. (A' = E., = 0). 

By writing 

det A = exp( tr In A) 

the following two formulae can be derived : 

a 2 
2 i  1 al.' 
- A  = AtrA-l-A,  

a2 a ___ 
2E.l132 

a2 
+(tr A-')- 

2Al2A2 

When specialized to equation (A.4). they read 

C 
- A  = ~YTB(O)+()~T)~;~~(B(O)B(O)- B(T)B( - T ) )  
2 i 2  

a2 
23.,ai, 

A = ()vT)~(B(O)B(O)- B(T)B( - 7)). 

When these expressions are substituted into equation (A.5) we find 

( n 1 m 2 )  = (+vT)'{(tr B(O))'-tr B(z)B(-7)) 

which is equation (2.31). 
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